You have to be signed in to use this resource.
Foundations of Prompt Engineering
Objectives
- Define prompt engineering and apply general best practices when interacting with FMs
- Identify the basic types of prompt techniques, including zero-shot and few-shot learning
- Apply advanced prompt techniques when necessary for your use case
- Identify which prompt-techniques are best-suited for specific models
- Identify potential prompt misuses
- Analyze potential bias in FM responses and design prompts that mitigate that bias
Please provide your feedback on the content of this learning Feedback form for Foundations of Prompt Engineering by AWS
Resource details
Contributed by: | Generative AI |
Authored by: |
|
Licence: | More information on licences |
Last updated: | 22 September 2025 |
First contributed: | 02 July 2025 |
Audience access level: | Full user |
Report an issue with this resource
You may report a resource, for example, if there is an issue with copyright infringement, breach of personal data, factual inaccuracies, typing errors or safety concerns. The type of issue will determine whether the resource is immediately removed from the platform or if the contributor is asked to make amendments. You can report a resource from the resource information page or by contacting the Learning Hub support team.
You can contact the Learning Hub support team by completing the support form or if you have a general enquiry you can email enquiries@learninghub.nhs.uk.